
(NMR) spectroscopy of skeletal muscle in

this patient demonstrated normal tricarboxylic

acid cycle flux but reduced adenosine tri-

phosphate (ATP) production, suggesting im-

paired coupling of these processes (fig. S5, D

and E). Additional studies of other kindred

members will be required to establish the fre-

quency and severity of these manifestations.

These findings establish a causal relation-

ship between a mitochondrial mutation and

hypertension, hypercholesterolemia, and hy-

pomagnesemia. The mitochondrial origin of

this disorder is of particular interest given

recent evidence implicating mitochondrial

dysfunction in type 2 diabetes mellitus and

insulin resistance, other components of the

metabolic syndrome. Rare mitochondrial mu-

tations cause diabetes with deafness (25). In

vivo NMR of skeletal muscle has linked

loss of mitochondrial function to insulin re-

sistance (26). Finally, expression of genes

involved in oxidative phosphorylation is re-

duced among patients with type 2 diabetes

mellitus and insulin resistance (27). Thus, al-

though insulin resistance, obesity, and hy-

pertriglyceridemia are absent in K129, these

traits have been previously linked to loss

of mitochondrial function. These observa-

tions raise the possibility that all the fea-

tures of the metabolic syndrome can result

from pleiotropic effects of impaired mito-

chondrial function; we speculate that the loss

of mitochondrial function with aging (26, 28)

might commonly contribute to all compo-

nents of the metabolic syndrome.

The variation in the phenotypic conse-

quences of this homoplasmic mitochondrial

mutation is notable. Hypomagnesemia, hyper-

tension, and hypercholesterolemia each show

È50% penetrance among adults on the ma-

ternal lineage. Incomplete penetrance arising

from homoplasmic mutations is well de-

scribed and has been attributed to nuclear

genome and/or environmental modifiers (29).

The nearly stochastic distributions of these

traits on the maternal lineage (fig. S2) and

the nonsignificant correlations among their

quantitative values on the maternal lineage

suggests that these are independent, pleio-

tropic effects of the mitochondrial mutation.

Prior studies suggest potential mecha-

nisms linking each trait to impaired mito-

chondrial function. Cells of the DCT have the

highest energy consumption of the nephron

(30), and Mg2þ reabsorption in the DCT re-

quires ATP-dependent Naþ reabsorption (31).

Inhibitors of mitochondrial ATP production

increase cholesterol biosynthesis while inhib-

iting clearance in vitro (32). Finally, reduced

ATP production has been reported in animal

models of hypertension (33). Further work

will be required to elucidate the molecular

mechanisms linking genotype and phenotype.

The results of this study suggest that

the loss of mitochondrial function with age

(26, 28) could contribute to the characteristic

age-related increase in blood pressure (34)

and to its clustering with hypocholesterol-

emia in the general population. The mutation

in K129 results in a complex pattern of phe-

notypic clustering that is reminiscent of the

frequent but not obligatory clustering seen

in the general population. This highlights

the complexity that can arise from a single

mutation because of the combined effects of

reduced penetrance and pleiotropy and un-

derscores the value of studying very large

kindreds. The present findings motivate fur-

ther investigation of a potential role for mito-

chondrial dysfunction in common forms of

hypertension and hypercholesterolemia.
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Multidimensional Drug Profiling
By Automated Microscopy

Zachary E. Perlman,1,2* Michael D. Slack,3*. Yan Feng,1*-
Timothy J. Mitchison,1,2 Lani F. Wu,3`

Steven J. Altschuler3`

We present a method for high-throughput cytological profiling by microscopy.
Our system provides quantitative multidimensional measures of individual cell
states over wide ranges of perturbations. We profile dose-dependent phe-
notypic effects of drugs in human cell culture with a titration-invariant
similarity score (TISS). This method successfully categorized blinded drugs and
suggested targets for drugs of uncertain mechanism. Multivariate single-cell
analysis is a starting point for identifying relationships among drug effects at a
systems level and a step toward phenotypic profiling at the single-cell level. Our
methods will be useful for discovering the mechanism and predicting the
toxicity of new drugs.

High-throughput methods for describing cell

phenotype such as transcriptional and pro-

teomic profiling allow broad, quantitative,

and machine-readable measures of the re-

sponses of cell populations to perturbation

(1–4). Automated microscopy has the poten-

tial to complement these profiling approaches

by allowing fast and cheap collection of data

describing protein behaviors and biological

pathways within individual cells (5–9). Ac-

cessing these data to produce useful profiles

of cell phenotype will require new image
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analysis methods, the development of which

has so far lagged behind the adoption of high-

throughput imaging technologies.

In the context of drug discovery, profiling

technologies are useful in measuring both

drug action on a desired target in the cellular

milieu and drug action on other targets.

Ideally, such profiling should be performed

as a function of drug concentration, because

several factors make the effects of drugs

highly dose dependent. For example, the

degree to which a primary target is perturbed

may affect different downstream pathways

differently, and drugs can bind to multiple

targets with different affinities. In some

cases, the therapeutic mechanism may in-

volve binding to more than one target with

differing affinity (10, 11). To date, drug

effects have been broadly profiled with

transcript analysis, proteomics, and measure-

ment of cell line dependence of toxicity (11–

21). In these studies, multidimensional profil-

ing methods were only applied at a single-

drug concentration. The only studies in which

drug dose has been explicitly considered as a

variable used the degree of cell proliferation,

an essentially one-dimensional (1D) readout of

phenotype (12, 13). Two recent reviews have

highlighted the possibility of using combina-

tions of targeted phenotypic imaging screens

to generate profiles of drug activity (6, 22). Here,

we suggest that large sets of unbiased measure-

ments might serve as high-dimensional cytol-

ogical profiles analogous to transcriptional

profiles. We present a method based on

hypothesis-free molecular cytology that pro-

vides multidimensional single-cell phenotypic

information yet is simple and inexpensive

enough to allow extensive dose-response

profiles for many drugs.

We assembled a test set of 100 com-

pounds (table S1). Of these, 90 were drugs of

known mechanism of action, six were

blinded alternate titrations from this set of

known drugs, one (didemnin B) was a toxin

reported to have multiple biological targets

(23), and three were drugs of unknown

mechanism. The known drug set was chosen

to cover common mechanisms of toxicity or

therapeutic action in cancer and other dis-

eases and to include several groups with a

common target (macromolecule or pathway)

but unrelated structures. We analyzed 13

threefold dilutions of each drug, covering a

final concentration range on cells from

micromolar to picomolar Etable S2 and

supporting online material (SOM) text A^.
HeLa (human cancer) cells were cultured in

384-well plates to near confluence, treated

with drugs for 20 hours, fixed, and stained with

fluorescent probes for various cell components

and processes. We chose 11 distinct probes

that covered a range of cell biology, multiplex-

ing a DNA stain and two antibodies per well

Ethe probe sets are SC35, anillin; "-tubulin,

actin; phospho-p38, phospho–extracellular

signal–regulated kinase (ERK); p53, c-Fos;

phospho–adenosine 3¶,5¶-monophosphate re-

sponse element–binding protein (CREB),

calmodulin^. Using automated fluorescence

microscopy, we collected images of up to

È8000 cells from each well. On each plate, 26

wells were treated only with dimethyl sulfox-

ide (DMSO) to generate a control population

(SOM text A). The experiment was per-

formed twice in parallel to provide a replicate

data set. Image segmentation procedures were

used to automatically identify nuclei and

nuclear organelles, and cytoplasmic regions

were approximated as an annulus surrounding

each identified nucleus (Fig. 1A and SOM

text B). For each cell, region, and probe, a

set of descriptors was measured. These

included measures of size, shape, and inten-

sity, as well as ratios of intensities between

regions (93 descriptors total, table S3). In all,

È7 � 107 individual cells were identified

from 9600,000 images, yielding È10
9

data

points.

We can examine the population response

of each descriptor to increasing concentra-

tions of a given drug, which we show with

the genotoxic compound camptothecin (24)

(Fig. 1B). At low concentrations, the histo-

gram for the total DNA content has the

characteristic bimodal shape reflecting a

mixture of G
1
, S, and G

2
/M cell populations.

G
2

and M populations may be distinguished

by 2D display of total DNA signal against

nuclear area (25). As drug concentration

increases, the cells arrest with S/G
2

DNA

content (24). The measured DNA content

distribution shifts leftward as dose increases,

and at the highest concentrations apoptosis is

widely induced. Anillin, a cytokinesis protein

whose levels reflect cell cycle progression

Fig. 1. Key steps in algorithm for reducing image data to compound profile. (A) Image
segmentation. For each image [examples show DNA (blue), SC35 (red), and anillin (green)], we
generated a nuclear region (blue) and a set of associated regions [shown here are cytoplasmic
annulus (yellow) and SC35 speckles (red)]. For each defined nuclear region, we measure multiple
descriptors. (B) Quantification of population response. For a given compound, titration, and
descriptor, we generated a population histogram and related cumulative distribution function (cdf)
(black) to be compared with the control population (blue). Shown is a threefold dilution series
ranging from 65 pM to 35 6M camptothecin. We reduced each experimental cdf to a single
dependent variable through comparison with a control population with the nonparametric KS
statistic against a control population (SOM text C). Each vertical red or green line indicates the
position and sign of the maximal height difference between the curves; this height is the KS
statistic. (C) Heat map of compound profile. A z score is calculated for each KS statistic (SOM text
C), and the vector of z scores for all descriptors and all titrations is displayed for rapid visual
assessment. Increased scores are represented in red and decreased in green, with intensity
encoding magnitude. Arrowheads to the right indicate descriptors shown in (B), and the arrowhead
at the bottom indicates the dose shown in (A).
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(26), shows marked nuclear accumulation in

the G
2

arrested state (Fig. 1A). p53, a trans-

cription factor that is part of the genotoxic

response pathway, is strongly induced at high

camptothecin concentrations, but much less so

at concentrations sufficient to promote G
2

arrest (Fig. 1B).

For profiling studies, it is useful to reduce

each population of descriptor values to a

single number. Our study made several

demands of this reduction: It must be able

to compare distributions of arbitrary shape

(Fig. 1B); it must be robust to variation in

dynamic range and noise levels among

different descriptors; it must convert differ-

ent types of measurement into a common

unit for comparison; it must be descriptor

parameterization independent (e.g., an inten-

sity ratio should behave the same as its

reciprocal); and it must be insensitive to the

precise quantitative relationship between

antibody-staining intensity and antigen den-

sity. We devised a measure based on the

Kolmogorov-Smirnov (KS) statistic, allow-

ing nonparametric comparison of experimen-

tal and control distributions from the same

plate (Fig. 1B, fig. S1, and SOM text C).

Dividing by a measure of the variability

within the control population yielded a z

score, which can be displayed as a function

of descriptor and drug concentration in a

heat plot to allow rapid visual comparison of

compound response profiles (Fig. 1C). These

plots represent a family of dose-response

curves for a single drug but differ from tra-

ditional curves reflecting changes in a bio-

chemical measurement. In particular, the

relationship between z score and the original

physical measure may be nonlinear. For

example, the statistically significant res-

ponses of p53 to low doses of camptothecin

(Fig. 1C) reflect subtle effects not easily

discerned by eye in the source images.

The heat plots typically have a sharp

transition, reflecting a concentration at

which many descriptors become different

from control values. We will refer to this as

the primary effective concentration (PEC)

for the drug. The isolated responses observed

at some low concentrations represent noise

that could be reduced by increasing repli-

cates, improving experimental procedures,

and normalizing for local variation in cell

density. For 39 drugs, we saw no strong

effect, leaving a heat plot dominated by

noise. Those drugs either lack a target in

HeLa cells, were used at inactive dosages, or

effected changes not detectable with our

antibody set. For almost all of the 61 drugs

that showed a strong response, some descrip-

tors responded at concentrations other than

the PEC (Fig. 2). This may reflect varying

biological consequences of low and high

saturation of a single target, or it may reflect

interactions with multiple targets with dif-

ferent affinities. For example, camptothecin

binds primarily to DNA complexes with

topoisomerase I, promoting DNA strand

breaks and S-phase arrest at low concen-

trations, but it also blocks transcription and a

number of other cellular processes at higher

concentrations (24). Other drugs in our test

set are known to have multiple targets, such

as histone deacetylase inhibitors (27) and the

general kinase inhibitor staurosporine (28)

and were thus expected to show complex

dose-response behavior. Such phenotypic

Fig. 2. Comparison of compound profiles. As in Fig. 1C, the x axis shows increasing dose and the y
axis encodes descriptors. Dose ranges are shown from 65 pM to 35 6M for all drugs except
epothilone B, which is shown from .65 pM to .35 6M. Color scale is as in Fig. 1C. For ease of
visualization, descriptors in all profiles are sorted in decreasing order of camptothecin response.
(A) Compounds of similar mechanism show similar profiles. Shown are representative compound
profiles. HDAC, histone deacetylase; ALLN, N-acetyl-Leu-Leu-norleucinal. (B) Compound profiles
can distinguish differences between drugs with similar mechanisms. Wells with too few cells for
analysis are represented in white.

Table 1. Assessment of TISS by literature categories. For each category that has more than two
compounds, we computed two sets of TISS scores: pairwise TISS comparisons between members of the
category (intrapair) and comparisons in which only one element of the pair is in the category (interpair).
As a crude in silico comparison to other cell-based assays such as fluorescence-activated cell sorting
(single-cell based) and cytoblots (whole-population based), we repeated this procedure with a descriptor
set consisting of only total intensity measures and compared it with either our KS-based TISS values or a
mean-based TISS values (SOM text C). P values (columns 2 to 4) describe the probability that the rank
ordering of the two sets of TISS values would have been seen by random draws from the same
distribution (SOM text C). KS, KS-based TISS (P value); mean, mean-based TISS (P value).

Category

All descriptors
Total intensity

descriptors
No. pairwise TISS

comparisons

KS KS Mean Intrapair Interpair

Actin 0.025 0.776 0.327 6 218
DNA replication 0.011 0.057 0.007 3 168
Histone deacetylase 0.001 0.024 0.489 10 265
Kinase 0.223 0.746 0.902 3 168
Kinase CDK 0.057 0.221 0.050 6 218
Microtubule 3.86 � 10j20 9.81 � 10j6 0.295 55 484
Protein synthesis 6.02 � 10j5 0.004 0.180 15 309
Topoisomerase 0.005 0.011 0.693 3 168
Vesicle trafficking 0.206 0.314 0.514 3 168
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complexity may help explain why toxicity at

high doses is common even for therapeutic

drugs that are apparently highly selective at

the level of target binding.

Drugs with common reported targets but

diverse chemical structures often showed

similar profiles readily distinguished from

those of drugs of different mechanism (Fig.

2A). In other cases, markedly different

profiles were evident within a family, most

notably the protein synthesis inhibitors (Fig.

2B). This may reflect different cell responses

to alternative biochemical mechanisms of

poisoning ribosomes (29) or perhaps the

existence of alternate targets (23).

When comparing drug mechanism, changes

in specificity (and thus phenotype) are rele-

vant, but changes in affinity (and thus PEC)

are not. Two different dosage series of the

same drug should result in similar heat plots

shifted along the concentration axis. We

developed a titration-invariant similarity

score (TISS) to allow comparison between

dose-response profiles independent of start-

ing dose (SOM text C). TISS values were

generated for the 61 compounds that showed

significant signal, and these were used for

unsupervised clustering (Fig. 3). TISS was

successful at grouping compounds with sim-

ilar reported targets (Table 1). As expected,

clustering reflected biological mechanism

rather than chemical similarity. For example,

kinase inhibitors, most of which are adeno-

sine 5¶-triphosphate–mimetic compounds, did

not cluster as a group. Clustering was poor

even within a set of kinase inhibitors with

overlapping targets Ecyclin-dependent kinase

(CDK) inhibitors^, perhaps reflecting variable

inhibition of other kinases. The CDK inhib-

itors related by structure and reported target

(purvalanol, roscovitine, and olomoucine) did

cluster.

Of the blinded alternate titrations of known

drugs, scriptaid, hydroxyurea, emetine, and

two alternate series of nocodazole showed sig-

nificant responses. These clustered closely with

their unblinded counterparts and compounds of

similar reported mechanism. Didemnin B, for

which the reported range of activities includes

inhibition of protein synthesis (23), clustered

with ribosome inhibitors (Fig. 2B). Two of the

three poorly characterized compounds showed

strong responses. One, concentramide, is

difficult to interpret. The other, austocystin,

clusters with transcription and translation

inhibitors. Preliminary experiments suggest

that this compound inhibits transcription in

vitro (25). Thus, our methods can group com-

pounds of like mechanism and thereby

suggest mechanism for new drugs.

Extensions of cytological profiling to

reflect dependencies among descriptors will

allow more sophisticated analysis of drug

Fig. 3. Hierarchical clustering of the 61 most responsive compound profiles
by TISS values. Compound stock concentrations (6M) are in parentheses
(fig. S3). Left panel shows mechanism of compound as described in litera-

ture. In blue are compounds that were blinded or are of unknown mech-
anism. Middle panel shows matrix of P values derived from pairwise TISS
values (SOM text C). Dendrogram at top shows degree of association.
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responses at a systems level. For example,

both p53 and c-Fos, a transcription factor

involved in mitogen-activated protein kinase

(MAPK) signaling, are involved in cell stress

responses, but the interrelationship of the

p53 and MAPK pathways is poorly under-

stood (30). Single-cell profiling reveals that

different drug mechanisms induce different

relative patterns of response by these two

pathways (Fig. 4). The proteasome inhibitor

MG132 causes increased correlated induc-

tion in these pathways, whereas responses to

camptothecin are anticorrelated. Anticorre-

lated responses observed in fixed-time

images may reflect switching of mutually

exclusive cell states in response to different

degrees of stress or might reflect a dynamic

temporal response, such as oscillation, that is

not synchronized among cells (31). These

data help establish a concentration and time

window, but live imaging will be required to

distinguish between these hypotheses.

Cytometric dose-response profiling is a

fast and cheap method for quantitatively

surveying broad ranges of individual cell

responses. We have used our methods to

assign mechanism to blinded and uncharac-

terized drugs and to suggest systems-level

relationships between signaling pathways.

The complex dose-response curves and large

cell-to-cell variability we frequently observed

reinforce the utility of unbiased multidimen-

sional characterization of drug effects over

wide ranges of doses.

Many improvements and extensions of

this work are possible. These include better

lab automation, broader drug reference sets,

different types of perturbation (such as RNA

interference), improved strategies for cell

segmentation, more sophisticated feature ex-

traction (5, 9), different sets of antibody

probes and cells, the inclusion of more time

points and live cell imaging, and the inte-

gration of complementary profiling strategies.

Additionally, our methods may be extended to

allow the characterization of responses by

subpopulations defined by such variables as

cell cycle state, cell density, or neighboring

environment. This analysis, extended to work

in tissues or clinical samples, offers the po-

tential to speed the identification of toxic

compounds during therapeutic drug develop-

ment and the targeting of drug effects to

specific subtypes of cells.
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Fig. 4. Single-cell analysis showsdif-
fering patterns of dose-dependent
p53 and c-Fos responses to differ-
ent drugs. (A) Scatter plot of
average nuclear p53 intensity
versus average c-Fos intensity in
a typical control well and repre-
sentative image. The bright cells
at the top of the image are in
mitosis. (B) Dose-dependent in-
creases in response to MG132
shown in heat maps are correlat-
ed in scatter plots and images
(orange nuclei), shown for the four
highest concentrations. (C) Dose-
dependent increases in response to campto-
thecin shown in heat maps are anticorre-
lated in scatter plots and images. The black
(c-Fos) and green (p53) heat map values
for the highest dose reflect the contribu-
tion of apoptotic cells with negligible p53
and c-Fos nuclear staining.

R E P O R T S

12 NOVEMBER 2004 VOL 306 SCIENCE www.sciencemag.org1198


